
Notes on an in-place migration from Gentoo/i686 to
multilib Gentoo/x86 64

Johan Hattne • e-mail: auzzie@yodel.net • Revised: 2011-03-04
This document attempts to summarise one of several possible ways to migrate from
a 32-bit system to a 64-bit ditto. It is nowhere claimed that this is how it is supposed
to be done—because it is not. Hence, this text is not a how-to; it may, however,
be a how-not-to. The sane way is undoubtedly a fresh install. This insane way was
chosen because it seemed more fun. All applicable disclaimers apply: the procedure
outlined here gives the reader ample opportunity to break every aspect of a fully
functional system. Anyone not confident in their ability to recover from taking any
bad advice given here should not start following it. In the words of bsdmaster:
“you’ve been warned”.

Introduction

The starting point is an up-to-date i686 Gentoo system, i.e. neither emerge
-1DNu @world nor revdep-rebuild -i does anything and uname -m outputs
i686. It is assumed that the kernel does not need any external modules to boot
the system and that any architecture-dependent binary data, such as database
files, are dumped to some portable format before starting the migration.

Before going any further, a backup directory is created. The backups taken
during this exercise will certainly not allow for a full system recovery, and are
thus not a substitute for a proper backup. The backup directory should reside
on the root partition, because it will contain copies of essential system libraries
which may be required during boot before any other partitions have become
available. Since it is hard to predict exactly how the system will be broken in
case something goes wrong, the reader is largely expected to know how to use
contents of this directory if a recovery becomes necessary.
mkdir /migration-backup
chmod 1777 /migration-backup

Because some steps can be performed by a regular, unprivileged user, the per-
missions of the backup directory grant write access to everybody. Note that in
this text $ denotes the prompt of any unprivileged user on the system. Certain
shells may use % or > for that purpose. The user prompt is distinct from #,
which denotes the prompt of the superuser.

Build a 64-bit cross compiler

The first preparatory step in the transition to a 64-bit system is the installa-
tion of a cross compiler—here, a gcc that runs on an i686 system but creates
executable code for an x86 64 system. These steps are adapted from Ortwin
Glück’s blog post Migration from x86 to x86 64. Indeed, Ortwin’s post, as
well as an unplanned hardware upgrade, was the inspiration for this project.

1

http://marc.info/?l=openbsd-misc&m=128915260827889
http://www.odi.ch/weblog/posting.php?posting=572

cp -a /etc/make.conf /migration-backup
emerge -1 crossdev
crossdev -S -s3 --target x86 64-pc-linux-gnu

This will install a 64-bit development environment—a C compiler, the kernel
headers, and a standard C library—to build and link x86 64 objects on an i686
system. A C++ compiler is not required. A standard local overlay may need
to be set up prior to installing the cross-compiler.
mkdir /usr/local/portage
echo PORTDIR OVERLAY=/usr/local/portage >> /etc/make.conf

The sources necessary to build sys-devel/binutils and sys-devel/gcc will
be needed later, but should now be available in /usr/portage/distfiles. If
not, they can be fetched separately.
emerge -f sys-devel/binutils sys-devel/gcc

Build and boot a 64-bit kernel

If directory permissions allow, a 64-bit kernel can be configured and built by an
unprivileged user. In the commands below, mind the trailing dash after gnu in
the definition of CROSS COMPILE.
$ cd /usr/src/linux
$ cp -a .config /migration-backup/kernel32.config
$ make ARCH=x86 64 oldconfig
$ make ARCH=x86 64 CROSS COMPILE=x86 64-pc-linux-gnu-

Make sure to say yes to IA32 Emulation, otherwise the new kernel will not be
able to run anything from the current 32-bit userland. Then install and boot the
new kernel. The exact commands depend on the configuration of the bootloader
and the layout of the filesystem. Here, the following commands were used:
make ARCH=x86 64 CROSS COMPILE=x86 64-pc-linux-gnu-
modules install
mount /boot
cp -a /boot/kernel /boot/kernel.old
cp -a /boot/System.map /boot/System.map.old
cp -a arch/x86/boot/bzImage /boot/kernel
cp -a System.map /boot/System.map
umount /boot
reboot

When the system is back up, uname -m should output x86 64.

Prepare for a 64-bit userland

In order to start replacing the 32-bit userland with its 64-bit equivalent, some
preparations are in order. First, edit /etc/make.conf and make the following
changes:

2

• Ensure CFLAGS and CXXFLAGS are conservative, e.g. "-O2 -pipe".

• Change CHOST to x86 64-pc-linux-gnu.

• If present, set ACCEPT KEYWORDS to amd64 or ∼amd64.

• Add -sandbox to the FEATURES variable. The currently installed sys-apps/sandbox
package does not understand 64-bit binaries, so it will not work until it
can be rebuilt with a multilib compiler.

• Comment out any LINGUAS and USE definitions. The purpose of this
change is merely to reduce the number of dependencies while rebuilding
the userland later on.

Enable a 64-bit multilib profile. Note that the location of the most appro-
priate profile may differ in more recent versions of the portage tree.
cd /etc
mv make.profile /migration-backup
ln -s ../usr/portage/profiles/default/linux/amd64/10.0
make.profile

Back up the current 32-bit libraries, and instruct the dynamic linker to con-
sider the backup locations when resolving symbols at runtime.
$ cp -ar /lib /migration-backup/lib32
$ cp -ar /usr/lib /migration-backup/usr lib32
echo
LDPATH=/migration-backup/lib32:/migration-backup/usr lib32 >
/etc/env.d/99migration
env-update

Create directories for the 64-bit libraries and populate them with the 64-bit
runtime linker and the fundamental libraries from the cross-development envi-
ronment.
mkdir /lib32 /lib64 /usr/lib32 /usr/lib64
cp -ar /usr/x86 64-pc-linux-gnu/lib64/* /lib64
cp -ar /usr/x86 64-pc-linux-gnu/usr/lib64/* /usr/lib64

Because the currently installed system header files contain 32-bit specific in-
formation, replace them with the corresponding files from the cross-development
environment and updated kernel headers.
cp -ar /usr/include /migration-backup/include32
cp -ar /usr/x86 64-pc-linux-gnu/usr/include/* /usr/include
emerge -1 sys-kernel/linux-headers

Rebuilding the native toolchain

From here on 32-bit packages are going to be replaced by their corresponding
64-bit versions. This may cause all kinds of havoc, and mistakes can lead to the

3

machine becoming inaccessible. It is advisable to do all that follows in a single
session.

Build a minimal native C compiler

The finicky bit is to replace the cross-development environment with native
binutils, gcc and libc. To that end, any libraries depended on by the toolchain
need to be present in their 64-bit versions.
emerge -1 zlib
USE="-cxx -gpm" emerge -1 ncurses
USE="nocxx" emerge -1 gmp
CPPFLAGS=-I/usr/include LDFLAGS=-L/usr/lib64 emerge -1 mpfr

The USE-flags are chosen in order to eliminate any further dependencies. The
preprocessor- and linker-flags are customised for the build of dev-libs/mpfr,
because the current cross-compiler does not search /usr/include or /usr/lib64
by default. Note that this is volatile information: newer versions of the depen-
dencies may sport different USE-flags, and newer versions of GCC may have dif-
ferent dependencies altogether. Indeed, sys-devel/gcc-4.4.5 was stabilised
while this text was written up.

While the 64-bit toolchain dependencies are compiling, the build directory
for GCC can be prepared. Note again that the version numbers may need to be
adjusted.
$ mkdir /migration-backup/toolchain-build
$ cd /migration-backup/toolchain-build
$ tar -xjf /usr/portage/distfiles/binutils-2.20.1.tar.bz2
$ tar -xjf /usr/portage/distfiles/gcc-4.4.4.tar.bz2
$ ln -s -t gcc-4.4.4 ../binutils-2.20.1/bfd
../binutils-2.20.1/binutils ../binutils-2.20.1/gas
../binutils-2.20.1/ld ../binutils-2.20.1/opcodes
$ mkdir objdir

Once the 64-bit dependencies are in place, the cross-compiler is used to build a
minimal, native development environment in the directory previously prepared.
For further information on configuring and compiling the GNU compiler collec-
tion, see the Installing GCC document.
$ cd objdir
$../gcc-4.4.4/configure --prefix=/migration-backup/toolchain
--with-gmp-include=/usr/include --with-gmp-lib=/usr/lib64
--with-mpfr-include=/usr/include --with-mpfr-lib=/usr/lib64
--disable-bootstrap --enable-languages=c --disable-nls
CC=x86 64-pc-linux-gnu-gcc
$ make
$ make install

These steps can be performed by an unprivileged user.

4

http://gcc.gnu.org/install

Build a proper native C compiler

Unlike in the standard situation, where the cross-compiler does not interfere
with the native build system, the cross-compiler has here been (ab)used as a
native compiler. To avoid conflicts when installing the proper native toolchain,
it is necessary to remove the cross-development environment and, optionally,
the sys-devel/crossdev package, before proceeding.
crossdev -C x86 64-pc-linux-gnu
emerge -c crossdev

The /usr/x86 64-pc-linux-gnu directory should be recursively removed. Then,
install sys-devel/binutils and sys-devel/gcc through portage using the
minimal, native compiler
CC=/migration-backup/toolchain/bin/x86 64-unknown-linux-gnu-gcc
USE=-nls emerge -1 binutils
CC=/migration-backup/toolchain/bin/x86 64-unknown-linux-gnu-gcc
USE=-nls emerge -1 gcc

Now, only sys-libs/glibc is missing for the the new 64-bit development en-
vironment to be complete.

From lib to multilib

The next step is to rename /lib to /lib32 and to create a symbolic link to
/lib64 in its place. Until now, there should not have been any need to worry
about the 32-bit executables—as long as they can find their libraries they should
remain functional. Copies of any 32-bit libraries that were removed from their
original locations by the previous steps should be present in /migration-backup
and the runtime linker should find them there. However, all 32-bit dynamic ex-
ecutables will be broken as soon as /lib does not contain a working 32-bit run-
time linker. Hence, in order complete the switcheroo of the /lib* directories—
which critically depends on functional mv(1) and ln(1) commands—a 64-bit
version of sys-apps/coreutils is necessary.
USE="-acl -nls" emerge -1 coreutils

The next few steps may introduce massive—albeit temporary—breakage:
swap the /lib and /usr/lib directories, preserve the 32-bit runtime linker and
standard C library, adjust the GNU ld-script in /usr/lib32/libc.so, and mi-
grate the kernel modules. In principle, the contents of /lib and /usr/lib32
may just be moved over to /lib32 and /usr/lib32 respectively, but the immi-
nent reinstallation of sys-libs/glibc and @world will replace them anyway.

5

cp -a /usr/lib/libc[-.]* /usr/lib32
sed -i -e "s:/lib/:/lib32/:g" /usr/lib32/libc.so
mv /lib/ld-* /lib/libc[-.]* /lib32
mv /lib/modules /lib64
mv /lib /lib.old
cd /
ln -s lib64 lib
ln -s -t lib64 ../lib32/ld-linux.so.2

A multilib standard C library

Finally, reinstall the standard C library. The COLLISION IGNORE variable is set
because the several files belonging to sys-libs/glibc were manually moved
into place outside portage’s control.
COLLISION IGNORE="/lib32 /lib64 /usr/include /usr/lib32
/usr/lib64" USE=-nls emerge -1 glibc

Just like during an ordinary change of the CHOST variable, the environment
may need to be cleaned up, see the Changing the CHOST variable document
for more information.
mv /usr/i686-pc-linux-gnu /migration-backup
rm -f /etc/env.d/05gcc-i686-pc-linux-gnu
/etc/env.d/binutils/config-i686-pc-linux-gnu
/etc/env.d/gcc/config-i686-pc-linux-gnu
env-update && source /etc/profile

Eventually grep -r i686 /etc/env.d should not find any matches, but there
should be files for the updated CHOST, i.e. x86 64.

Rebuild a 64-bit system

Optional: A 64-bit login(1)

The system will remain largely broken until everything is rebuilt. Notably,
PAM will not work, because it is searching for 32-bit modules modules in the
/lib/security directory. While that means that the machine has become
completely inaccessible, one may work around that by installing sys-libs/pam,
sys-apps/shadow and their dependencies before proceeding.
USE=-nls emerge -1 flex
USE="-berkdb -cracklib -nls" emerge -1 pam
USE="-cracklib -nls" emerge -1 shadow

Now, the new login program will make use of the new PAM modules in
/lib64/security. Access through ssh may require additional work.

6

http://www.gentoo.org/doc/en/change-chost.xml

Rebuild @world

Now only remains to rebuild the entire system in 64-bit mode. Even though
straightforward, some packages will probably fail because their dependencies are
of the wrong architecture. One approach is to run
emerge -1e --keep-going @world

and then manually rebuilding skipped packages and packages that have residues
left in /var/tmp/portage. sys-apps/portage may fail during the postrm and
postinst phase, which means that the contents of /usr/lib/portage were not
properly removed. That can be done manually by
mv /usr/lib/portage /tmp/migration-backup

Endgame

Edit /etc/make.conf, reverting some of the changes introduced earlier.

• Set CFLAGS and CXXFLAGS to something appropriate.

• Remove -sandbox from the FEATURES variable.

• Remove the definition of PORTDIR OVERLAY if appropriate.

• Uncomment any commented LINGUAS and USE definitions.

The contents of the /lib.old directory should now be replicated in /lib32
and /lib64. The /usr/lib directory should be mostly empty. Once confident
that the library directories /lib32, /lib64, /usr/lib32, and /usr/lib64 and
/usr/i686-pc-linux-gnu are complete, the redundant directories can be removed.
mv /lib.old /migration-backup
cd /usr
mv lib/gcc lib64/gcc
mv lib /migration-backup/usr lib
ln -s lib64 lib

Remove the backup directories from the dynamic linker’s search path,
rm /etc/env.d/99migration
env-update && source /etc/profile

restore any backed-up databases, and verify link consistency,
revdep-rebuild -i

Since the USE-flags have changed, an emerge -1DNu @world is now in order.
However, because the system has gone through extensive changes and the CFLAGS
may have changed substantially, an emerge -1e @world may actually be pre-
ferred in order to verify that all is well. Once convinced that it is so, remove
the /migration-backup directory, and that will be the end of this text.

7

	Introduction
	Build a 64-bit cross compiler
	Build and boot a 64-bit kernel
	Prepare for a 64-bit userland
	Rebuilding the native toolchain
	Build a minimal native C compiler
	Build a proper native C compiler
	From lib to multilib
	A multilib standard C library

	Rebuild a 64-bit system
	Optional: A 64-bit login(1)
	Rebuild @world
	Endgame

